Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia Open ; 8(3): 834-845, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37052238

RESUMO

OBJECTIVE: As of 2022, 36 anti-seizure medications (ASMs) have been licensed for the treatment of epilepsy, however, adverse effects (AEs) are commonly reported. Therefore, ASMs with a wide margin between therapeutic effects and AEs are preferred over ASMs that are associated with a narrow margin between efficacy and risk of AEs. E2730 was discovered using in vivo phenotypic screening and characterized as an uncompetitive, yet selective, inhibitor of γ-aminobutyric acid (GABA) transporter 1 (GAT1). Here, we describe the preclinical characteristics of E2730. METHODS: Anti-seizure effects of E2730 were evaluated in several animal models of epilepsy: corneal kindling, 6 Hz-44 mA psychomotor seizure, amygdala kindling, Fragile X syndrome, and Dravet syndrome models. Effects of E2730 on motor coordination were assessed in accelerating rotarod tests. The mechanism of action of E2730 was explored by [3 H]E2730 binding assay. The GAT1-selectivity over other GABA transporters was examined by GABA uptake assay of GAT1, GAT2, GAT3, or betaine/GABA transporter 1 (BGT-1) stably expressing HEK293 cells. To further investigate the mechanism for E2730-mediated inhibition of GAT1, in vivo microdialysis and in vitro GABA uptake assays were conducted under conditions of different GABA concentrations. RESULTS: E2730 showed anti-seizure effects in the assessed animal models with an approximately >20-|fold margin between efficacy and motor incoordination. [3 H]E2730 binding on brain synaptosomal membrane was abolished in GAT1-deficient mice, and E2730 selectively inhibited GAT1-mediated GABA uptake over other GABA transporters. In addition, results of GABA uptake assays showed that E2730-mediated inhibition of GAT1 positively correlated to the level of ambient GABA in vitro. E2730 also increased extracellular GABA concentration in hyperactivated conditions but not under basal levels in vivo. SIGNIFICANCE: E2730 is a novel, selective, uncompetitive GAT1 inhibitor, which acts selectively under the condition of increasing synaptic activity, contributing to a wide margin between therapeutic effect and motor incoordination.


Assuntos
Anticonvulsivantes , Epilepsia , Proteínas da Membrana Plasmática de Transporte de GABA , Animais , Humanos , Camundongos , Ataxia , Epilepsia/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de GABA/administração & dosagem , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/metabolismo , Células HEK293 , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico
2.
Brain Struct Funct ; 218(5): 1099-114, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22903287

RESUMO

Degeneration of the septohippocampal system is associated with the progression of Dementia of the Alzheimer's type (DAT). Impairments in mnemonic function and spatial orientation become more severe as DAT progresses. Although evidence supports a role for cholinergic function in these impairments, relatively few studies have examined the contribution of the septohippocampal GABAergic component to mnemonic function or spatial orientation. The current study uses the rat food-hoarding paradigm and water maze tasks to characterize the mnemonic and spatial impairments associated with infusing GAT1-Saporin into the medial septum/vertical limb of the diagonal band (MS/VDB). Although infusion of GAT1-Saporin significantly reduced parvalbumin-positive cells in the MS/VDB, no reductions in markers of cholinergic function were observed in the hippocampus. In general, performance was spared during spatial tasks that provided access to environmental cues. In contrast, GAT1-Saporin rats did not accurately carry the food pellet to the refuge during the dark probe. These observations are consistent with infusion of GAT1-Saporin into the MS/VDB resulting in spared mnemonic function and use of environmental cues; however, self-movement cue processing was compromised. This interpretation is consistent with a growing literature demonstrating a role for the septohippocampal system in self-movement cue processing.


Assuntos
Feixe Diagonal de Broca/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/farmacologia , Memória/fisiologia , Movimento/fisiologia , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Animais , Sinais (Psicologia) , Proteínas da Membrana Plasmática de Transporte de GABA/administração & dosagem , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Movimento/efeitos dos fármacos , Parvalbuminas/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans , Proteínas Inativadoras de Ribossomos Tipo 1/administração & dosagem , Saporinas
3.
Hippocampus ; 21(8): 835-46, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20865731

RESUMO

The medial septum and diagonal band (MSDB) are important in spatial learning and memory. On the basis of the excitotoxic damage of GABAergic MSDB neurons, we have recently suggested a role for these neurons in controlling proactive interference. Our study sought to test this hypothesis in different behavioral procedures using a new GABAergic immunotoxin. GABA-transporter-saporin (GAT1-SAP) was administered into the MSDB of male Sprague-Dawley rats. Following surgery, rats were trained in a reference memory water maze procedure for 5 days, followed by a working memory (delayed match to position) water maze procedure. Other rats were trained in a lever-press avoidance procedure after intraseptal GAT1-SAP or sham surgery. Intraseptal GAT1-SAP extensively damaged GABAergic neurons while sparing most cholinergic MSDB neurons. Rats treated with GAT1-SAP were not impaired in acquiring a spatial reference memory, learning the location of the escape platform as rapidly as sham rats. In contrast, GAT1-SAP rats were slower than sham rats to learn the platform location in a delayed match to position procedure, in which the platform location was changed every day. Moreover, GAT1-SAP rats returned to previous platform locations more often than sham rats. In the active avoidance procedure, intraseptal GAT1-SAP impaired extinction but not acquisition of the avoidance response. Using a different neurotoxin and behavioral procedures than previous studies, the results of this study paint a similar picture that GABAergic MSDB neurons are important for controlling proactive interference.


Assuntos
Feixe Diagonal de Broca/fisiologia , Neurônios GABAérgicos , Memória de Curto Prazo/fisiologia , Septo do Cérebro/fisiologia , Animais , Colina O-Acetiltransferase/imunologia , Feixe Diagonal de Broca/citologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de GABA/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Imunotoxinas/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/induzido quimicamente , Memória de Curto Prazo/efeitos dos fármacos , Inibição Proativa , Ratos , Ratos Sprague-Dawley , Proteínas Inativadoras de Ribossomos Tipo 1/administração & dosagem , Saporinas , Septo do Cérebro/citologia , Percepção Espacial/fisiologia , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...